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P R E F A C E
This is a textbook for a first course in differential equations. The book is intended for
science and engineering majors who have completed the calculus sequence, but not nec-
essarily a first course in linear algebra. It emphasizes a systems approach to the subject
and integrates the use of modern computing technology in the context of contemporary
applications from engineering and science.

Our goal in writing this text is to provide these students with both an introduction to,
and a survey of, modern methods, applications, and theory of differential equations that is
likely to serve them well in their chosen field of study. The subject matter is presented in a
manner consistent with the way practitioners use differential equations in their work; tech-
nology is used freely, with more emphasis on methods, modeling, graphical representation,
qualitative concepts, and geometric intuition than on theory.

Notable Changes in the Third Edition
This edition is a substantial revision of the second edition. The most significant changes
are:
▶ Enhanced Page Layout We have placed important results, theorems, definitions, and

tables in highlighted boxes and have put subheadings just before the most important
topics in each section. This should enhance readability for both students and instructors
and help students to review material for exams.

▶ Increased Emphasis on Qualitative Methods Qualitative methods are introduced early.
Throughout the text, new examples and problems have been added that require the stu-
dent to use qualitative methods to analyze solution behavior and dependence of solutions
on parameters.

▶ New Chapter on Numerical Methods Discussions on numerical methods, dispersed
over three chapters in the second edition, have been revised and reassembled as a unit
in Chapter 8. However, the first three sections of Chapter 8 can be studied by students
after they have studied Chapter 1 and the first two sections of Chapter 2.

▶ Chapter 1: Introduction This chapter has been reduced to three sections. In Section
1.1 we follow up on introductory models and concepts with a discussion of the art and
craft of mathematical modeling. Section 1.2 has been replaced by an early introduction
to qualitative methods, in particular, phase lines and direction fields. Linearization and
stability properties of equilibrium solutions are also discussed. In Section 1.3 we cover
definitions, classification, and terminology to help give the student an organizational
overview of the subject of differential equations.

▶ Chapter 2: First Order Differential Equations New mathematical modeling problems
have been added to Section 2.3, and a new Section 2.7 on subsitution methods has been
added. Sections on numerical methods have been moved to Chapter 8.

▶ Chapter 3: Systems of Two First Order Equations The discussion of Wronskians and
fundamental sets of solutions has been supplemented with the definition of, and rela-
tionship to, linearly independent solutions of two-dimensional linear systems.

▶ Chapter 4: Second Order Linear Equations Section 4.6 on forced vibrations, frequency
response, and resonance has been rewritten to improve its readability for students and
instructors.

v



vi Preface
▶ Chapter 10: Orthogonal Functions, Fourier Series and Boundary-Value Problems

This chapter gives a unified treatment of classical and generalized Fourier series in the
framework of orthogonal families in the space PC[a, b].

▶ Chapter 11: Elementary Partial Differential Equations Material and projects on the
heat equation, wave equation, and Laplace’s equation that appeared in Chapters 9 and
10 of the second edition, have been moved to Chapter 11 in the third edition.

▶ Miscellaneous Changes and Additions Changes have been made in current problems,
and new problems have been added to many of the section problem sets. For ease in
assigning homework, boldface headings have been added to partition the problems into
groups corresponding to major topics discussed in the section.

Major Features
▶ Flexible Organization. Chapters are arranged, and sections and projects are structured,

to facilitate choosing from a variety of possible course configurations depending on
desired course goals, topics, and depth of coverage.

▶ Numerous and Varied Problems. Throughout the text, section exercises of varying lev-
els of difficulty give students hands-on experience in modeling, analysis, and computer
experimentation.

▶ Emphasis on Systems. Systems of first order equations, a central and unifying theme
of the text, are introduced early, in Chapter 3, and are used frequently thereafter.

▶ Linear Algebra and Matrix Methods. Two-dimensional linear algebra sufficient for the
study of two first order equations, taken up in Chapter 3, is presented in Section 3.1.
Linear algebra and matrix methods required for the study of linear systems of dimension
n (Chapter 6) are treated in Appendix A.

▶ Optional Computing Exercises. In most cases, problems requesting computer-
generated solutions and graphics are optional.

▶ Visual Elements. The text contains a large number of illustrations and graphs. In addi-
tion, many of the problems ask the student to compute and plot solutions of differential
equations.

▶ Contemporary Project Applications. Optional projects at the end of all but one of
Chapters 2 through 11 integrate subject matter in the context of exciting, often contem-
porary, applications in science and engineering.

▶ Laplace Transforms. A detailed chapter on Laplace transforms discusses systems, dis-
continuous and impulsive input functions, transfer functions, feedback control systems,
poles, and stability.

▶ Control Theory. Ideas and methods from the important application area of control the-
ory are introduced in some examples, some projects, and in the last section on Laplace
transforms. All this material is optional.

▶ Recurring Themes and Applications. Important themes, methods, and applications,
such as dynamical system formulation, phase portraits, linearization, stability of equilib-
rium solutions, vibrating systems, and frequency response, are revisited and reexamined
in a variety of mathematical models under different mathematical settings.

▶ Chapter Summaries. A summary at the end of each chapter provides students and
instructors with a bird’s-eye view of the most important ideas in the chapter.

▶ Answers to Problems. Answers to selected odd-numbered problems are provided at
the end of the book; many of them are accompanied by a figure.

Problems that require the use of a computer are marked with . While we feel that students
will benefit from using the computer on those problems where numerical approximations
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or computer-generated graphics are requested, in most problems it is clear that use of a
computer, or even a graphing calculator, is optional. Furthermore there are a large number
of problems that do not require the use of a computer. Thus the book can easily be used in
a course without using any technology.

Relation of This Text to Boyce and DiPrima
Brannan and Boyce is an offshoot of the well-known textbook by Boyce and DiPrima. Read-
ers familiar with Boyce and DiPrima will doubtless recognize in the present book some of
the hallmark features that distinguish that textbook.

To help avoid confusion among potential users of either text, the primary differences are
described below:
▶ Brannan and Boyce is more sharply focused on the needs of students of engineering

and science, whereas Boyce and DiPrima targets a somewhat more general audience,
including engineers and scientists.

▶ Brannan and Boyce is intended to be more consistent with the way contemporary scien-
tists and engineers actually use differential equations in the workplace.

▶ Brannan and Boyce emphasizes systems of first order equations, introducing them ear-
lier, and also examining them in more detail than Boyce and DiPrima. Brannan and
Boyce has an extensive appendix on matrix algebra to support the treatment of systems
in n dimensions.

▶ Brannan and Boyce integrates the use of computers more thoroughly than Boyce and
DiPrima, and assumes that most students will use computers to generate approximate
solutions and graphs throughout the book.

▶ Brannan and Boyce emphasizes contemporary applications to a greater extent than
Boyce and DiPrima, primarily through end-of-chapter projects.

▶ Brannan and Boyce makes somewhat more use of graphs, with more emphasis on phase
plane displays, and uses engineering language (e.g., state variables, transfer functions,
gain functions, and poles) to a greater extent than Boyce and DiPrima.

Options for Course Structure
Chapter dependencies are shown in the following block diagram:

Chapter 3
Systems of

Two
First Order
Equations

Chapter 2
First Order
Differential
Equations

Chapter 6
Systems of
First Order

Linear
Equations

Chapter 7
Nonlinear
Differential
Equations

and Stability

Chapter 4
Second
Order
Linear

Equations

Chapter 5
The

Laplace
Transform

Chapter 9
Series

Solutions of
Second Order

Equations

Chapter 10
Orthogonal
Functions,

Fourier Series,
and BVPs

Chapter 8
Numerical
Methods

Chapter 11
Elementary

PDEs

Appendix A
Matrix

Algebra

Chapter 1
Introduction
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The book has much built-in flexibility and allows instructors to choose from many op-

tions. Depending on the course goals of the instructor and background of the students,
selected sections may be covered lightly or even omitted.
▶ Chapters 5, 6, and 7 are independent of each other, and Chapters 6 and 7 are also inde-

pendent of Chapter 4. It is possible to spend much class time on one of these chapters,
or class time can be spread over two or more of them.

▶ The amount of time devoted to projects is entirely up to the instructor.
▶ For an honors class, a class consisting of students who have already had a course in

linear algebra, or a course in which linear algebra is to be emphasized, Chapter 6 may
be taken up immediately following Chapter 2. In this case, material from Appendix A,
as well as sections, examples, and problems from Chapters 3 and 4, may be selected as
needed or desired. This offers the possibility of spending more class time on Chapters 5,
7, and/or selected projects.
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Supplemental Resources for Instructors and Students

An Instructor’s Solutions Manual, includes solutions for all problems in the text.
A Student Solutions Manual, ISBN 9781118981252, includes solutions for selected

problems in the text.
A Companion website, www.wiley.com/college/brannan, provides a wealth of resources

for students and instructors, including:
▶ PowerPoint slides of important ideas and graphics for study and note taking.
▶ Online Only Projects—these projects are like the end-of-chapter projects in the text.

They present contemporary problems that are not usually included among traditional
differential equations topics. Many of the projects involve applications derived from a
variety of disciplines and integrate or extend theories and methods presented in core
material.

▶ Mathematica, Maple, and MATLAB data files are provided for selected end-of-section or
end-of-chapter problems in the text allowing for further exploration of important ideas
in the course utilizing these computer algebra and numerical analysis packages. Students
will benefit from using the computer on problems where numerical approximations or
computer generated graphics are requested.

▶ Review of Integration—An online review of integration techniques is provided for stu-
dents who need a refresher.

WileyPLUS: Expect More from Your Classroom Technology
This text is supported by WileyPLUS—a powerful and highly integrated suite of teaching
and learning resources designed to bridge the gap between what happens in the classroom
and what happens at home. WileyPLUS includes a complete online version of the text,
algorithmically generated exercises, all of the text supplements, plus course and homework
management tools, in one easy-to-use website.

Organized around the everyday activities you perform in class, WileyPLUS helps you:
▶ Prepare and Present: WileyPLUS lets you create class presentations quickly and easily

using a wealth of Wiley-provided resources, including an online version of the textbook,
PowerPoint slides, and more. You can adapt this content to meet the needs of your course.

▶ Create Assignments: WileyPLUS enables you to automate the process of assigning and
grading homework or quizzes.

▶ Track Student Progress: An instructor’s gradebook allows you to analyze individual
and overall class results to determine students’ progress and level of understanding.

▶ Promote Strong Problem-Solving Skills: WileyPLUS can link homework problems to
the relevant section of the online text, providing students with context-sensitive help.
WileyPLUS also features mastery problems that promote conceptual understanding of
key topics and video walkthroughs of example problems.

▶ Provide Numerous Practice Opportunities: Algorithmically generated problems pro-
vide unlimited self-practice opportunities for students, as well as problems for homework
and testing.

▶ Support Varied Learning Styles: WileyPLUS includes the entire text in digital format,
enhanced with varied problem types to support the array of different student learning
styles in today’s classrooms.

▶ Administer Your Course: You can easily integrate WileyPLUS with another course
management system, gradebooks, or other resources you are using in your class, en-
abling you to build your course, your way.



C O N T E N T S

C H A P T E R 1 Introduction 1
1.1 Mathematical Models and Solutions 2
1.2 Qualitative Methods: Phase Lines and Direction
Fields 12
1.3 Definitions, Classification, and Terminology 28

C H A P T E R 2 First Order Differential
Equations 37
2.1 Separable Equations 38
2.2 Linear Equations: Method of Integrating Factors 45
2.3 Modeling with First Order Equations 55
2.4 Differences Between Linear and Nonlinear
Equations 70
2.5 Autonomous Equations and Population Dynamics 80
2.6 Exact Equations and Integrating Factors 93
2.7 Substitution Methods 101
Projects
2.P.1 Harvesting a Renewable Resource 110
2.P.2 A Mathematical Model of a Groundwater
Contaminant Source 111
2.P.3 Monte Carlo Option Pricing: Pricing Financial
Options by Flipping a Coin 113

C H A P T E R 3 Systems of Two First Order
Equations 116
3.1 Systems of Two Linear Algebraic Equations 117
3.2 Systems of Two First Order Linear Differential
Equations 129
3.3 Homogeneous Linear Systems with Constant
Coefficients 145
3.4 Complex Eigenvalues 167
3.5 Repeated Eigenvalues 178
3.6 A Brief Introduction to Nonlinear Systems 189
Projects
3.P.1 Estimating Rate Constants for an Open
Two-Compartment Model 199
3.P.2 A Blood–Brain Pharmacokinetic Model 201

C H A P T E R 4 Second Order Linear
Equations 203
4.1 Definitions and Examples 203
4.2 Theory of Second Order Linear Homogeneous
Equations 216
4.3 Linear Homogeneous Equations with Constant
Coefficients 228

4.4 Mechanical and Electrical Vibrations 241
4.5 Nonhomogeneous Equations; Method of
Undetermined Coefficients 252
4.6 Forced Vibrations, Frequency Response, and
Resonance 261
4.7 Variation of Parameters 274
Projects
4.P.1 A Vibration Insulation Problem 285
4.P.2 Linearization of a Nonlinear Mechanical
System 286
4.P.3 A Spring-Mass Event Problem 288
4.P.4 Euler–Lagrange Equations 289

C H A P T E R 5 The Laplace Transform 294
5.1 Definition of the Laplace Transform 295
5.2 Properties of the Laplace Transform 304
5.3 The Inverse Laplace Transform 311
5.4 Solving Differential Equations with Laplace
Transforms 320
5.5 Discontinuous Functions and Periodic Functions 328
5.6 Differential Equations with Discontinuous Forcing
Functions 337
5.7 Impulse Functions 344
5.8 Convolution Integrals and Their Applications 351
5.9 Linear Systems and Feedback Control 361
Projects
5.P.1 An Electric Circuit Problem 371
5.P.2 The Watt Governor, Feedback Control, and
Stability 372

C H A P T E R 6 Systems of First Order
Linear Equations 377
6.1 Definitions and Examples 378
6.2 Basic Theory of First Order Linear Systems 389
6.3 Homogeneous Linear Systems with Constant
Coefficients 399
6.4 Nondefective Matrices with Complex Eigenvalues 410
6.5 Fundamental Matrices and the Exponential of a
Matrix 420
6.6 Nonhomogeneous Linear Systems 431
6.7 Defective Matrices 438
Projects
6.P.1 Earthquakes and Tall Buildings 446
6.P.2 Controlling a Spring-Mass System to
Equilibrium 449

xi



xii Contents
C H A P T E R 7 Nonlinear Differential
Equations and Stability 456
7.1 Autonomous Systems and Stability 456
7.2 Almost Linear Systems 466
7.3 Competing Species 476
7.4 Predator–Prey Equations 488
7.5 Periodic Solutions and Limit Cycles 496
7.6 Chaos and Strange Attractors: The Lorenz
Equations 506
Projects
7.P.1 Modeling of Epidemics 514
7.P.2 Harvesting in a Competitive Environment 516
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Introduction

I
n this introductory chapter we formulate several problems that illustrate
basic ideas that reoccur frequently in this book.

In Section 1.1 we discuss two mathematical models, one from physics
and one from population biology. Each mathematical model is a differ-
ential equation—an equation involving the rate of change of a variable
with respect to time. Using these models as examples, we introduce

some basic terminology, explore the notion of a solution of a differential equation, and end
with an overview of the art and craft of mathematical modeling.

It is not always possible to find analytic, closed-form solutions of a differential equation.
In Section 1.2 we look at two graphical methods for studying the qualitative behavior of
solutions: phase lines and direction fields. Although we will learn how to sketch direction
fields by hand, we will use the computer to draw them.

Sections 1.1 and 1.2 give us a glimpse of two of the three major methods of studying
differential equations, the analytical method and the geometric method, respectively.
We defer study of the third major method—numerical—to Chapter 8. However, you may
study the first three sections of Chapter 8 immediately after Chapter 1.

In Section 1.3 we present some important definitions and commonly used terminol-
ogy in conjunction with different ways of classifying differential equations. Classification
schemes provide organizational structure for the book and help give you perspective on
the subject of differential equations.

1



2 Chapter 1 Introduction

1.1 Mathematical Models and Solutions
Many of the principles, or laws, underlying the behavior of the natural world are statements,
or relations, involving rates in which one variable, say, y, changes with respect to another
variable, t, for example. Most often, these relations take the form of equations containing y
and certain of the derivatives y′, y′′,… , y(n) of y with respect to t. The resulting equations
are then referred to as differential equations. Some examples of differential equations that
will be studied in detail later on in the text, are:

y′ = r
(

1 − y
K

)
y, an equation for population dynamics,

my′′ + !y′ + ky = 0, the equation for a damped spring-mass system, and
"′′ + g

l
sin(") = 0, the pendulum equation.

The subject of differential equations was motivated by problems in mechanics, elasticity,
astronomy, and geometry during the latter part of the 17th century. Inventions (or discov-
eries) in theory, methods, and notation evolved concurrently with innovations in calculus.
Since their early historical origins, the number and variety of problems to which differential
equations are applied have grown substantially. Today, scientists and engineers use differ-
ential equations to study problems in all fields of science and engineering, as well as in
several of the business and social sciences. Some representative problems from these fields
are shown below.

Applications of Differential Equations

∙ airplane and ship design ∙ heat transfer
∙ earthquake detection and prediction ∙ wave propagation
∙ controlling the flight of ships and rockets ∙ weather forecasting
∙ modeling the dynamic behavior of nerve cells ∙ designing medical imaging technologies
∙ describing the behavior of economic systems ∙ determining the price of financial derivatives
∙ forecasting and managing the harvesting of fish populations
∙ designing optimal vaccination policies to prevent the spread of disease

The common thread that links these applications is that they all deal with systems that
evolve in time. Differential equations is the mathematical apparatus that we use to study
such systems.

We often refer to a differential equation that describes some physical process as a math-
ematical model of the process; many such models are discussed throughout this book. In
this section we construct a model from physics and a model from population biology. Each
model results in an equation that can be solved by using an integration technique from cal-
culus. These examples suggest that even simple differential equations can provide useful
models of important physical systems.



1.1 Mathematical Models and Solutions 3

Heat Transfer: Newton’s Law of Cooling

EXAMPLE
1

If a material object is hotter or colder than the surrounding environment, its temperature will
approach the temperature of the environment. If the object is warmer than the environment,
its temperature will decrease. If the object is cooler than the environment, its temperature
will increase. Sir Isaac Newton postulated that the rate of change of the temperature of
the object is negatively proportional to the difference between its temperature and the tem-
perature of the surroundings (the ambient temperature). This principle is referred to as
Newton’s law of cooling.

Suppose we let u(t) denote the temperature of the object at time t, and let T be the ambient
temperature (see Figure 1.1.1). Then du∕dt is the rate at which the temperature of the object
changes. From Newton, we know that du∕dt is proportional to −(u − T). Introducing a
positive constant of proportionality k called the transmission coefficient, we then get the
differential equation

du
dt

= −k(u − T), or u′ = −k(u − T). (1)

Temperature u

Natural or convective flow
at temperature T

F I G U R E 1 . 1 . 1 Newton’s Law of Cooling: The time rate of change of u, du∕dt, is
negatively proportional to u − T: du∕dt ∝ −(u − T).

Note that the minus sign on the right side of Eq. (1) causes du∕dt to be negative if
u(t) > T , while du∕dt is positive if u(t) < T . The transmission coefficient measures the rate
of heat exchange between the object and its surroundings. If k is large, the rate of heat
exchange is rapid. If k is small, the rate of heat exchange is slow. This would be the case,
for example, if the object was surrounded by thick insulating material.

The temperatures u and T are measured in either degrees Fahrenheit (◦F) or degrees
Celsius (◦C). Time is usually measured in units that are convenient for expressing time
intervals over which significant changes in u occur, such as minutes, hours, or days. Since
the left side of Eq. (1) has units of temperature per unit time, k must have the units of
(time)−1.

Newton’s law of cooling is applicable to situations in which the temperature of the object
is approximately uniform at all times. This is the case for small objects that conduct heat
easily, or containers filled with a fluid that is well mixed. Thus, we expect the model to be
reasonably accurate in predicting the temperature of a small copper sphere, a well-stirred
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cup of coffee, or a house in which the air is continuously circulated, but the model would
not be very accurate for predicting the temperature of a roast in an oven.

Terminology
Let us assume that the ambient temperature T in Eq. (1) is a constant, say, T = T0, so that
Eq. (1) becomes

u′ = −k(u − T0). (2)
In Section 1.2 we consider an example in which T depends on t. Common mathematical
terminology for the quantities that appear in this equation are:

time t is an independent variable,
temperature u is a dependent variable because it depends on t,

k and T0 are parameters in the model.

The equation is an ordinary differential equation because it has one, and only one, in-
dependent variable. Consequently, the derivative in Eq. (2) is an ordinary derivative. It is
a first order equation because the highest order derivative that appears in the equation is
the first derivative. The dependency of u on t implies that u is, in fact, a function of t, say,
u = #(t). Thus when we write Eq. (2), three questions may, after a bit of reflection, come
to mind:
1. “Is there actually a function u = #(t), with derivative u′ = d#∕dt, that makes Eq. (2) a

true statement for each time t?” If such a function exists, it is called a solution of the
differential equation.

2. “If the differential equation does have a solution, how can we find it?”
3. “What can we do with this solution, once we have found it?”
In addition to methods used to derive mathematical models, answers to these types of ques-
tions are the main subjects of inquiry in this book.

Solutions and Integral Curves
By a solution of Eq. (2), we mean a differentiable function u = #(t) that satisfies the equa-
tion. One solution of Eq. (2) is u = T0, since Eq. (2) reduces to the identity 0 = 0 when T0 is
substituted for u in the equation. In other words, “It works when we put it into the equation.”
The constant solution u = T0 is referred to as an equilibrium solution of Eq. (2). Although
simple, equilibrium solutions usually play an important role in understanding the behavior
of other solutions. In Section 1.2 we will consider them in a more general setting.

If we assume that u ≠ T0, we can discover other solutions of Eq. (2) by first rewriting it
in the form

du∕dt
u − T0

= −k. (3)

By the chain rule the left side of Eq. (3) is the derivative of ln |u − T0| with respect to t, so
we have

d
dt

ln |u − T0| = −k. (4)
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Then, by integrating both sides of Eq. (4), we obtain
ln |u − T0| = −kt + C, (5)

where C is an arbitrary constant of integration. Therefore, by taking the exponential of both
sides of Eq. (5), we find that

|u − T0| = e−kt+C = eCe−kt, (6)
or

u − T0 = ±eCe−kt. (7)
Thus

u = T0 + ce−kt (8)
is a solution of Eq. (2), where c = ±eC is also an arbitrary (nonzero) constant. Note that if
we allow c to take the value zero, then the constant solution u = T0 is also contained in the
expression (8). The expression (8) contains all possible solutions of Eq. (2) and is called
the general solution of the equation.

Given a differential equation, the usual problem is to find solutions of the equation.
However, it is also important to be able to determine whether a particular function is a
solution of the equation. Thus, if we were simply asked to verify that u in Eq. (8) is a
solution of Eq. (2), then we would need to substitute T0 + ce−kt for u in Eq. (2) and show
that the equation reduces to an identity, as we now demonstrate.

EXAMPLE
2

Verify by substitution that u = T0 + ce−kt, where c is an arbitrary real number, is a solution
of Eq. (2),

u′ = −k(u − T0), (9)
on the interval −∞ < t < ∞.

Substituting #(t) = T0 + ce−kt for u in the left side of the equation gives #′(t) = −kce−kt

while substituting #(t) for u into the right side yields −k(T0 + ce−kt − T0) = −kce−kt. Thus,
upon substitution, Eq. (2) reduces to the identity

−kce−kt
⏟⏟⏟
#′(t)

= −kce−kt
⏟⏟⏟
−k(#(t)−T0)

, −∞ < t < ∞,

for each real number c and each value of the parameter k.

▶ I nt e g r al Curv es . The geometrical representation of the general solution (8) is an infinite family of
curves in the tu-plane called integral curves. Each integral curve is associated with
a particular value of c; it is the graph of the solution corresponding to that value
of c.

Although we can sketch, by hand, qualitatively correct integral curves described by Eq.
(8), we will assign numerical values to k and T0, and then use a computer to plot the graph
of Eq. (8) for some different values of c. Setting k = 1.5 day−1 and T0 = 60◦F in Eq. (2)
and Eq. (8) gives us

du
dt

= −1.5(u − 60), (10)
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with the corresponding general solution

u = 60 + ce−1.5t. (11)
In Figure 1.1.2 we show several integral curves of Eq. (10) obtained by plotting the graph
of the function in Eq. (11) for different values of c. Note that all solutions approach the
equilibrium solution u = 60 as t → ∞.
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c = 5
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F I G U R E 1 . 1 . 2 Integral curves of u′ = −1.5(u − 60). The curve corresponding to c = 10
in Eq. (11) is the graph of u = 60 + 10e−1.5t, the solution satisfying the
initial condition u(0) = 70. The curve corresponding to c = 0 in Eq. (11)
is the graph of the equilibrium solution u = 60, which satisfies the initial
condition u(0) = 60.

Initial Value Problems
Frequently, we want to focus our attention on a single member of the infinite family of solu-
tions by specifying the value of the arbitrary constant. Most often, we do this by specifying
a point that must lie on the graph of the solution. For example, to determine the constant c
in Eq. (11), we could require that the temperature have a given value at a certain time, such
as the value 70 at time t = 0. In other words, the graph of the solution must pass through
the point (0, 70). Symbolically, we can express this condition as

u(0) = 70. (12)
Then, substituting t = 0 and u = 70 into Eq. (11), we obtain

70 = 60 + c.

Hence c = 10, and by inserting this value in Eq. (11), we obtain the desired solution, namely,
u = 60 + 10e−1.5t. (13)

The graph of the solution (13) is the thick curve, labeled by c = 10, in Figure 1.1.2. The
additional condition (12) that we used to determine c is an example of an initial condition.
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The differential equation (10) together with the initial condition (12) form an initial value
problem.

Note that the solution of Eq. (10) subject to the initial condition u(0) = 60 is the equi-
librium solution u = 60, the thick curve labeled by c = 0 in Figure 1.1.2.

Population Biology
Next we consider a problem in population biology. To help control the field mouse popu-
lation in his orchards, in an economical and ecofriendly way, a fruit farmer installs nesting
boxes for barn owls, predators for whom mice are a natural food supply. In the absence of
predators we assume that the rate of change of the mouse population is proportional to the
current population; for example, if the population doubles, then the number of births per
unit time also doubles. This assumption is not a well-established physical law (such as the
laws of thermodynamics, which underlie Newton’s law of cooling in Example 1), but it is a
common initial hypothesis1 in a study of population growth. If we denote time by t and the
mouse population by p(t), then the assumption about population growth can be expressed
by the equation

dp
dt

= rp, (14)
where the proportionality factor r is called the rate constant or growth rate.

As a simple model for the effect of the owl population on the mouse population, let
us assume that the owls consume the mice at a constant predation rate a. By modifying
Eq. (14) to take this into account, we obtain the equation

dp
dt

= rp − a, (15)
where both r and a are positive. Thus the rate of change of the mouse population, dp∕dt, is
the net effect of the growth term rp and the predation term −a. Depending on the values of
p, r, and a, the value of dp∕dt may be of either sign.

EXAMPLE
3

Suppose that the growth rate for the field mice is 0.5/month and that the owls kill 15 mice per
day. Determine appropriate values for the parameters in Eq. (15), find the general solution
of the resulting equation, and graph several solutions, including any equilibrium solutions.

We naturally assume that p is the number of individuals in the mouse population at
time t. We can choose our units for time to be whatever seems most convenient; the two
obvious possibilities are days or months. If we choose to measure time in months, then the
growth term is 0.5p and the predation term is −(15 mice/day) ⋅ (30 days/month) = −450
mice/month, assuming an average month of 30 days. Thus Eq. (15) becomes

dp
dt

= 0.5p − 450, (16)
where each term has the units of mice/month.

By following the same steps that led to the general solution of Eq. (2), we find that the
general solution of Eq. (16) is

p = 900 + cet∕2, (17)
where c is again a constant of integration.
1A somewhat better model of population growth is discussed in Section 2.5.
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Integral curves for Eq. (16) are shown in Figure 1.1.3. For sufficiently large values of

p it can be seen from the figure, or directly from Eq. (16) itself, that dp∕dt is positive, so
that solutions increase. On the other hand, for small values of p the opposite is the case.
Again, the critical value of p that separates solutions that increase from those that decrease
is the value of p for which dp∕dt is zero. By setting dp∕dt equal to zero in Eq. (16) and then
solving for p, we find the equilibrium solution p = 900 for which the growth term and the
predation term in Eq. (16) are exactly balanced. This corresponds to the choice c = 0 in the
general solution (17).
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F I G U R E 1 . 1 . 3 Integral curves, including the equilibrium solution p = 900, for
p′ = 0.5p − 450.

Solutions of the more general equation (15), in which the growth rate and the predation
rate are unspecified, behave very much like those of Eq. (16). The equilibrium solution of
Eq. (15) is p = a∕r. Solutions above the equilibrium solution increase, while those below
it decrease.

Constructing Mathematical Models
Mathematical modeling is the craft, and art, of using mathematics to describe and under-
stand real-world phenomena. A viable mathematical model can be used to test ideas, make
predictions, and aid in design and control problems that are associated with the phenomena.
For instance, in Example 1, we constructed the differential equation

du
dt

= −k(u − T) (18)

to model heat exchange between an object and its surroundings. Recall that u(t) is the time-
dependent variable representing the temperature of the object and T is the temperature of
the surroundings. If the value of u is known at time t = 0, and the values of the parameters
T and k are known, solutions of this differential equation tell us what the temperature of the
object will be for times t > 0.
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representation

Mathematical
inferences

Analysis
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Graphics
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Qualitative predictions
Quantitative predictions

Determine dependent and independent variables
Assign symbols to variables
Choose sensible units of measurement for variables
Apply principles, laws, and assumptions

DATA
observations,
experiments

and measurements

Compare model
predictions with

data

F I G U R E 1 . 1 . 4 A diagram of the modeling process.

The steps used to arrive at Eq. (18) are typical of the steps used to construct any mathe-
matical model. It is, therefore, worthwhile to illustrate the general process by a system flow
diagram, as in Figure 1.1.4.

In the Problems for this section, and for many other sections of this textbook, we ask you
to construct differential equation models of various real-world phenomena. In constructing
mathematical models, you will find that each problem is different. Although the modeling
process, in broad outline, is well represented by the above diagram, it is not a skill that
can be reduced to the observance of a set of prescribed rules. Successful modeling usu-
ally requires that the modeler be intimate with the field in which the problem originates.
However experience has shown that the very act of attempting to construct a mathematical
model forces the modeler to ask the most cogent questions about the phenomenon being
investigated:

1. What is the purpose of the model?
2. What aspects of the phenomenon are most important for the intended uses of the

model?
3. What can we measure or observe?
4. What are the relevant variables; what is their relationship to the measurements?
5. Are there well-established principles (such as physical laws, or economic laws) to

guide us in formulating the model?
6. In terms of the variables, how do we mathematically represent the interaction of

various components of the phenomenon?
7. What simplifying assumptions can we make?
8. Do conclusions and predictions of the model agree with experiment and observa-

tions?
9. What additional experiments are suggested by the model?

10. What are limitations of the model?
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For many applied mathematicians, engineers, and scientists, mathematical modeling is

akin to poetry—an art form and creative act employing language that adheres to form and
conventions. Likewise, there are rules (e.g., physical laws) that the mathematical modeler
must follow, yet he or she has access to a myriad of mathematical tools (the language) for de-
scribing the phenomenon under investigation. History abounds with the names of scientists,
mathematicians, and engineers, driven by the desire to understand nature and advance tech-
nology, who have engaged in the practice of mathematical modeling: Newton, Euler, von
Kármán, Verhulst, Maxwell, Rayleigh, Navier, Stokes, Heaviside, Einstein, Schrödinger,
and so on. Their contributions have literally changed the world. Nowadays, mathematical
modeling is carried out in universities, government agencies and laboratories, business and
industrial concerns, policy think tanks, and institutes dedicated to research and education.
For many practitioners of mathematical modeling, it is, in a sense, their raison d’être.

P R O B L E M S

1. Newton’s Law of Cooling. A cup of hot coffee has a
temperature of 200◦F when freshly poured, and is left in
a room at 70◦F. One minute later the coffee has cooled to
190◦F.
(a) Assume that Newton’s law of cooling applies. Write
down an initial value problem that models the temperature
of the coffee.
(b) Determine when the coffee reaches a temperature of
170◦F.
2. Blood plasma is stored at 40◦F. Before it can be used, it
must be at 90◦F. When the plasma is placed in an oven at
120◦F, it takes 45 minutes (min) for the plasma to warm to
90◦F. Assume Newton’s law of cooling applies. How long
will it take the plasma to warm to 90◦F if the oven tempera-
ture is set at 100◦F?
3. At 11:09 p.m. a forensics expert arrives at a crime scene
where a dead body has just been found. Immediately, she
takes the temperature of the body and finds it to be 80◦F.
She also notes that the programmable thermostat shows that
the room has been kept at a constant 68◦F for the past 3 days.
After evidence from the crime scene is collected, the temper-
ature of the body is taken once more and found to be 78.5◦F.
This last temperature reading was taken exactly one hour af-
ter the first one. The next day the investigating detective asks
the forensic expert, “What time did our victim die?” Assum-
ing that the victim’s body temperature was normal (98.6◦F)
prior to death, what does she tell the detective?
4. Population Problems. Consider a population p of field
mice that grows at a rate proportional to the current popula-
tion, so that dp∕dt = rp.
(a) Find the rate constant r if the population doubles in 30
days.
(b) Find r if the population doubles in N days.
5. The field mouse population in Example 3 satisfies the dif-
ferential equation

dp∕dt = 0.5p − 450.

(a) Find the time at which the population becomes extinct if
p(0) = 850.
(b) Find the time of extinction if p(0) = p0, where
0 < p0 < 900.
(c) Find the initial population p0 if the population is to be-
come extinct in 1 year.
6. Radioactive Decay. Experiments show that a radioiso-
tope decays at a rate negatively proportional to the amount
of the isotope present.
(a) Use the following variables and parameters to write
down and solve an initial value problem for the process of
radioactive decay: t = time; a(t) = amount of the radioiso-
tope present at time t; a0 = initial amount of radioisotope;
r = decay rate, where r > 0.
(b) The half-life, T1∕2, of a radioisotope is the amount of
time it takes for a quantity of the radioactive material to de-
cay to one-half of its original amount. Find an expression for
T1∕2 in terms of the decay rate r.
7. A radioactive material, such as the isotope thorium-
234, disintegrates at a rate proportional to the amount cur-
rently present. If Q(t) is the amount present at time t, then
dQ∕dt = −rQ, where r > 0 is the decay rate.
(a) If 100 milligrams (mg) of thorium-234 decays to 82.04
mg in 1 week, determine the decay rate r.
(b) Find an expression for the amount of thorium-234
present at any time t.
(c) Find the time required for the thorium-234 to decay to
one-half its original amount.
8. Classical Mechanics. The differential equation for the
velocity ' of an object of mass m, restricted to vertical
motion and subject only to the forces of gravity and air
resistance, is

m d'
dt

= −mg − !'. (i)
In Eq. (i) we assume that the drag force, −!' where
! > 0 is a drag coefficient, is proportional to the velocity.
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Acceleration due to gravity is denoted by g. Assume that the
upward direction is positive.
(a) Show that the solution of Eq. (i) subject to the initial con-
dition '(0) = '0 is

' =
(
'0 +

mg
!

)
e−!t∕m − mg

!
.

(b) Sketch some integral curves, including the equilibrium
solution, for Eq. (i). Explain the physical significance of the
equilibrium solution.
(c) If a ball is initially thrown in the upward direction so that
'0 > 0, show that it reaches its maximum height when

t = tmax =
m
!
ln
(

1 +
!'0
mg

)
.

(d) The terminal velocity of a baseball dropped from a high
tower is measured to be 33 m/s. If the mass of the baseball is
145 grams (g) and g = 9.8 m/s2, what is the value of !?
(e) Using the values for m, g, and ! in part (d), what would
be the maximum height attained for a baseball thrown up-
ward with an initial velocity '0 = 30 m/s from a height of
2 m above the ground?
9. For small, slowly falling objects, the assumption made in
Eq. (i) of Problem 8 that the drag force is proportional to
the velocity is a good one. For larger, more rapidly falling
objects, it is more accurate to assume that the drag force is
proportional to the square of the velocity.2
(a) Write a differential equation for the velocity of a falling
object of mass m if the drag force is proportional to the square
of the velocity. Assume that the upward direction is positive.
(b) Determine the limiting velocity after a long time.
(c) If m = 0.025 kilograms (kg), find the drag coefficient so
that the limiting velocity is −35 m/s.
Mixing Problems. Many physical systems can be cast in the
form of a mixing tank problem. Consider a tank containing
a solution—a mixture of solute and solvent–such as salt dis-
solved in water. Assume that the solution at concentration
ci(t) flows into the tank at a volume flow rate ri(t) and is si-
multaneously pumped out at the volume flow rate ro(t). If the
solution in the tank is well mixed, then the concentration of
the outflow is Q(t)∕V(t), where Q(t) is the amount of solute
at time t and V(t) is the volume of solution in the tank. The
differential equation that models the changing amount of so-
lute in the tank is based on the principle of conservation of
mass,

dQ
dt

⏟⏟⏟
rate of change of Q(t)

= ci(t)ri(t)⏟⏟⏟
rate in

− {Q(t)∕V(t)} ro(t)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

rate out
, (i)

where V(t) also satisfies a mass conservation equation,
dV
dt

= ri(t) − ro(t). (ii)
If the tank initially contains an amount of solute Q0 in a vol-
ume of solution, V0, then initial conditions for Eqs. (i) and
(ii) are Q(0) = Q0 and V(0) = V0, respectively.
10. A tank initially contains 200 liters (L) of pure water.
A solution containing 1 g/L enters the tank at a rate of 4
L/min, and the well-stirred solution leaves the tank at a rate of
5 L/min. Write initial value problems for the amount of salt
in the tank and the amount of brine in the tank, at any time t.
11. A tank contains 100 gallons (gal) of water and 50
ounces (oz) of salt. Water containing a salt concentration of
1
4 (1 + 1

2 sin t) oz/gal flows into the tank at a rate of 2 gal/min,
and the mixture flows out at the same rate. Write an ini-
tial value problem for the amount of salt in the tank at any
time t.
12. A pond initially contains 1,000,000 gal of water and an
unknown amount of an undesirable chemical. Water contain-
ing 0.01 g of this chemical per gallon flows into the pond at
a rate of 300 gal/h. The mixture flows out at the same rate,
so the amount of water in the pond remains constant. As-
sume that the chemical is uniformly distributed throughout
the pond.
(a) Write a differential equation for the amount of chemical
in the pond at any time.
(b) How much of the chemical will be in the pond after a
very long time? Does this limiting amount depend on the
amount that was present initially?
13. Pharmacokinetics. A simple model for the concentra-
tion C(t) of a drug administered to a patient is based on the
assumption that the rate of decrease of C(t) is negatively pro-
portional to the amount present in the system,

dC
dt

= −kC,
where k is a rate constant that depends on the drug and its
value can be found experimentally.
(a) Suppose that a dose administered at time t = 0 is rapidly
distributed throughout the body, resulting in an initial con-
centration C0 of the drug in the patient. Find C(t), assuming
the initial condition C(0) = C0.
(b) Consider the case where doses of C0 of the drug are given
at equal time intervals T , that is, doses of C0 are administered
at times t = 0, T , 2T ,… . Denote by Cn the concentration im-
mediately after the nth dose. Find an expression for the con-
centration C2 immediately after the second dose.
(c) Find an expression for the concentration Cn immediately
after the nth dose. What is limn→∞ Cn?

2See Lyle N. Long and Howard Weiss, “The Velocity Dependence of Aerodynamic Drag: A Primer for
Mathematicians,” American Mathematical Monthly 106, no. 2 (1999), pp. 127–135.
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14. A certain drug is being administered intravenously to a
hospital patient. Fluid containing 5 mg/cm3 of the drug en-
ters the patient’s bloodstream at a rate of 100 cm3/h. The drug
is absorbed by body tissues or otherwise leaves the blood-
stream at a rate proportional to the amount present, with a
rate constant of 0.4 (h)−1.
(a) Assuming that the drug is always uniformly distributed
throughout the bloodstream, write a differential equation for
the amount of the drug that is present in the bloodstream at
any time.
(b) How much of the drug is present in the bloodstream after
a long time?
Continuously Compounded Interest. The amount of
money P(t) in an interest bearing account in which the prin-
cipal is compounded continuously at a rate r per annum
and in which money is continuously added, or subtracted,
at a rate of k dollars per annum satisfies the differential
equation

dP
dt

= rP + k. (i)
The case k < 0 corresponds to paying off a loan, while k > 0
corresponds to accumulating wealth by the process of regular
contributions to an interest bearing savings account.
15. Show that the solution to Eq. (i), subject to the initial
condition P(0) = P0, is

P =
(

P0 +
k
r

)
ert − k

r
. (ii)

Use Eq. (ii) in Problem 15 to solve Problems 16 and 17.
16. According to the International Institute of Social History
(Amsterdam), the amount of money used to purchase Man-
hattan Island in 1626 is valued at $1,050 in terms of today’s

dollars. If that amount were instead invested in an account
that pays 4% per annum with continuous compounding, what
would be the value of the investment in 2020? Compare with
the case that interest is paid at 6% per annum.
17. How long will it take to pay off a student loan of $20,000
if the interest paid on the principal is 5% and the student pays
$200 per month. What is the total amount of money repaid
by the student?
18. Derive Eq. (ii) in Problem 15 from the discrete approx-
imation to the change in the principal that occurs during the
time interval [t, t + Δt],

P(t + Δt) ≅ P(t) + (rΔt)P(t) + kΔt,
assuming that P(t) is continuously differentiable on t ≥ 0.
[Hint: Substitute P(t + Δt) = P(t) + P′(t)Δt + (1∕2)P′′(t̂)
(Δt)2), where t < t̂ < t + Δt, simplify, divide by Δt, and let
Δt → 0.]
Miscellaneous Modeling Problems
19. A spherical raindrop evaporates at a rate proportional to
its surface area. Write a differential equation for the volume
of the raindrop as a function of time.
20. Archimedes’s principle of buoyancy states that an ob-
ject submerged in a fluid is buoyed up by a force equal to
the weight of the fluid displaced. An experimental, spheri-
cally shaped sonobuoy of radius 1/2 m with a mass m kg is
dropped into the ocean with a velocity of 10 m/s when it hits
the water. The sonobuoy experiences a drag force due to the
water equal to one-half its velocity. Write down a differential
equation describing the motion of the sonobuoy. Find val-
ues of m for which the sonobuoy will sink and calculate the
corresponding terminal sink velocity of the sonobuoy. The
density of seawater is *0 = 1.025 kg/L.

1.2 Qualitative Methods: Phase Lines and
Direction Fields
In Section 1.1 we were able to find solutions of the differential equations

du
dt

= −k(u − T0) and dp
dt

= rp − k (1)

by using a simple integration technique. Do not assume that this is always possible. Finding
closed-form analytic solutions of differential equations can be difficult or impossible. For-
tunately, it is possible to obtain information about the qualitative behavior of solutions by
using elementary ideas from calculus and graphical methods; we consider two such meth-
ods in this section—phase line diagrams and direction fields.

Qualitative behavior refers to general properties of the differential equation and its
solutions such as existence of equilibrium points, behavior of solutions near equilibrium
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points, and long-time behavior of solutions.1 Qualitative analysis is important to the math-
ematical modeler because it can provide insight into even a very complicated model without
having to find an exact solution or an approximation to an exact solution. It can show, of-
ten with only a small amount of effort, whether the equations are a plausible model of the
phenomenon being studied. If not, what changes need to be made in the equations?

Autonomous Equations: Equilibrium Solutions
and the Phase Line

A first order autonomous differential equation is an equation of the form
dy
dt

= f (y). (2)
The distinguishing feature of an autonomous equation is that the independent variable, in
this case t, does not appear on the right side of the equation. For instance, the two equations
appearing in (1) are autonomous. Other examples of autonomous equations are

p′ = rp(1 − p∕K), x′ = sin x, and y′ =
√

k2∕y − 1,
where r, K, and k are constants. However, the equations

u′ + ku = kT0 + kA sin+t, x′ = sin(tx), and y′ = −y + t

are not autonomous because the independent variable t does appear on the right side of each
equation.

Equilibrium Solutions. The first step in a qualitative analysis of Eq. (2) is to find constant
solutions of the equation. If y = #(t) = c is a constant solution of Eq. (2), then dy∕dt = 0.
Therefore any constant solution must satisfy the algebraic equation

f (y) = 0. (3)
These solutions are called equilibrium solutions of Eq. (2) because they correspond to no
change or variation in the value of y as t increases or decreases. Equilibrium solutions are
also referred to as critical points, fixed points, or stationary points of Eq. (2).

Equilibrium solutions, although simple, are usually important for understanding the be-
havior of other solutions of the differential equation. To obtain information about other
solutions, we draw the graph of f (y) versus y. Figure 1.2.1 shows a generic plot of f (y),
where the equilibrium points are y = a, b, and c. It is convenient to think of the variable y
as the position of a particle whose motion along the horizontal axis is governed by Eq. (2).
The corresponding velocity of the particle, dy∕dt, is prescribed by Eq. (2).

At points where the velocity of the particle dy∕dt = f (y) > 0, so that y is an increasing
function of t, the particle moves to the right. This is indicated in Figure 1.2.1 by plac-
ing on the y-axis arrows that point to the right in the intervals y < a and b < y < c where
f (y) > 0. At points where the velocity of the particle dy∕dt = f (y) < 0, so that y is a decreas-
ing function of t, the particle moves to the left. This is indicated in Figure 1.2.1 by placing on
the y-axis arrows that point to the left in the intervals a < y < b and y > c, where f (y) < 0.
1In addition, the qualitative properties of differential equations include results about existence and unique-
ness of solutions, intervals of existence, and dependence of solutions on parameters and initial conditions.
These issues will be addressed in Sections 2.4 and 2.5.
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a b c y

f (y)

  y′ > 0   y′ > 0   y′ < 0  y′ < 0

F I G U R E 1 . 2 . 1 A generic graph of the right side of Eq. (2). The arrows on the y-axis
indicate the direction in which y is changing [given by the sign of
y′ = f (y)] for each possible value of y. At the equilibrium points y = a,
b, and c, dy∕dt = 0.

The particle is stationary at the equilibrium points y = a, b, and c since dy∕dt = 0 at each
of those points.

The horizontal line in Figure 1.2.1 is referred to as the phase line, or the one-
dimensional phase portrait of Eq. (2). The information contained in the phase line can
be used to sketch the qualitatively correct integral curves of Eq. (2) by drawing it verti-
cally just to the left of the ty-plane, as shown in Figure 1.2.2. We first draw the equilibrium
solutions y = a, b and c; then we draw a representative sampling of other curves that are in-
creasing when y < a and b < y < c and decreasing when a < y < b and y > c, as shown in
Figure 1.2.2b.

c

b

a

y

(a) (b)

y

t

c

b

a

F I G U R E 1 . 2 . 2 (a) The phase line. (b) Plots of y versus t.
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Stability of Equilibrium Points. In the drawings of the phase line notice that arrows drawn
on either side of the equilibrium point y = a point toward y = a. Consequently, solution
curves in Figure 1.2.2b that start sufficiently close to y = a approach y = a as t → ∞. Sim-
ilarly, arrows drawn on either side of y = c in Figures 1.2.1 and 1.2.2a point toward y = c.
It follows that solution curves that start sufficiently close to y = c approach y = c as t → ∞,
as shown in Figure 1.2.2b. The equilibrium points y = a and y = c are said to be asymp-
totically stable. On the other hand, arrows in the phase line that lie on either side of the
equilibrium point y = b point away from y = b. Correspondingly, solution curves that start
near y = b move away from y = b as t increases. The equilibrium point y = b is said to be
unstable.

To facilitate our understanding of asymptotically stable and unstable equilibrium points,
it is again useful to think of y as the position of a particle whose dynamics are governed by
Eq. (2). A particle, perturbed slightly via some disturbance, from an asymptotically stable
equilibrium point, will move back toward that point. However, a particle situated at an
unstable equilibrium point, subjected to any disturbance, will move away from that point.
All real-world systems are subject to disturbances, most of which are unaccounted for in
a mathematical model. Therefore, systems residing at unstable equilibrium points are not
likely to be observed in the real world.

EXAMPLE
1

Draw phase line diagrams for Eq. (2) of Section 1.1,

du
dt

= −k(u − T0), where k > 0, (4)

and use it to discuss the behavior of all solutions as t → ∞. Compare behaviors for two
different values of k, 0 < k1 < k2.

As shown in Figure 1.2.3a, the graph of f (u) = −k1(u − T0) versus u is a straight line
with slope −k1 < 0 that intersects the phase line at u = T0, the only equilibrium solution of
Eq. (4). Since u′ > 0 if u < T0 and u′ < 0 if u > T0, all arrows on the phase line point toward
u = T0, which is therefore asymptotically stable. Consequently, any solution u = #(t) of
Eq. (4) satisfies

lim
t→∞

#(t) = T0.

Equation (4) and Figure 1.2.3a also show that the absolute value of the instantaneous rate
of heat exchange (as measured by |u′|) is an increasing function of the difference between
the temperature of the object and the temperature of the surroundings,

|u′| = k1|u − T0|.

Thus the slope of any solution curve will be steeper at points far away from T0 compared
to points that are close to T0. Furthermore the slope will approach zero as |u − T0| → 0.
Solution curves consistent with these observations are shown in Figure 1.2.3b.
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u

t

u

t

(a) (b)

(c) (d)

f (u)

uT0  u′ > 0   u′ < 0

f(u) = –k1(u – T0)

f (u)

u

T0

T0T0  u′ > 0   u′ < 0

f (u) = –k2(u – T0)

F I G U R E 1 . 2 . 3 (a) and (c) Phase lines for du∕dt = −k(u − T0), k = k1 and k2, where
k1 < k2. The heavy blue arrows on the u-axis indicate the direction in
which u is changing [given by the sign of u′(t)] for each possible value
of u. For a given temperature difference u − T0, the instantaneous rate of
heat exchange depends on the slope −k of the line. The parameter k is
called the transmission coefficient. (b) and (d) Corresponding solutions
of du∕dt = −k(u − T0), where the phase line information in (a) and (c)
is overlaid on the vertical axes. The rate of approach to equilibrium is
governed by k. If k is small, the rate of heat exchange is slow. If k is
large, the rate of heat exchange is rapid.

EXAMPLE
2

Draw a phase line diagram for the mouse population growth model, Eq. (15) of Section 1.1,
dp
dt

= rp − a, where r, a > 0, (5)

and use it to describe the behavior of all solutions as t → ∞. Discuss implications of the
model for the fruit farmer.

The only equilibrium solution of Eq. (5) is p = a∕r. A plot of f (p) = rp − a versus p
in Figure 1.2.4a illustrates that p′ < 0 when p < a∕r, and p′ > 0 when p > a∕r. Thus the
arrows on the p-axis point away from the equilibrium solution, which is unstable. Corre-
sponding solution curves are shown in Figure 1.2.4b; note that the phase line diagram is
overlaid on the p-axis.
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f (p) p

t

(a) (b)

p
  p′ < 0   p′ > 0

f (p) = rp – a

a
r

a
r

F I G U R E 1 . 2 . 4 (a) The phase line for Eq. (5), dp∕dt = rp − a, where r, a > 0. The slope
r of the line corresponds to the growth rate of the mouse population.
The direction of the arrows on the p-axis shows that the equilibrium
solution p = a∕r is unstable. (b) Integral curves for Eq. (5).

Since the equilibrium solution is unstable, as time passes, an observer may see a mouse
population either much larger or much smaller than the equilibrium population, but the
equilibrium solution itself will not, in practice, be observed. Without the possible benefits
of a more accurate and complex population model,2 one inference that the fruit farmer
might draw is that if he wants to control the mouse population, then he must install enough
nesting boxes for the owls, thereby increasing the harvest rate a, to ensure that the mouse
population p(t) is always less than a∕r. Thus a∕r is a threshold value that should never be
exceeded by p(t) if the control strategy is to succeed.

This model also suggests a number of questions that the fruit farmer may wish to pursue,
perhaps with assistance from a biologist who is knowledgeable about life cycles and habitats
of field mice and owls:
▶ What is the growth rate of a field mouse population when there is an abundant food

supply?
▶ How many mice per day does a barn owl consume?
▶ How do we estimate the size of the mouse population?
▶ Should we model the owl population?
▶ What will be a sustainable owl population if the mouse population drops to an econom-

ically acceptable level.

In each of the above examples, equilibrium solutions are important for understanding
how other solutions of the given differential equation behave. An equilibrium solution may
be thought of as a solution that serves as a reference to other, often nearby, solutions. An
2More elaborate population models appear in Sections 2.5 and 7.4.



18 Chapter 1 Introduction
asymptotically stable equilibrium solution is often referred to as an attractor or sink, since
nearby solutions approach it as t → ∞. On the other hand, an unstable equilibrium solution
is referred to as a repeller or source.

The main steps for creating the phase line and a rough sketch of solution curves for a
first-order autonomous differential equation are summarized in Table 1.2.1.

T A B L E 1. 2 . 1
Procedure for drawing phase lines and sketching solution curves for an autonomous
equation.

Illustration
Step Phase Line Solution Curves

1. Find the equilibrium
solutions of dy∕dt = f (y).

Solve f (y) = 0.

2. Sketch the equilibrium
solutions.
These partition the phase line
and ty-plane into disjoint
regions.

Plot equilibrium solutions
as points along a vertical
line in increasing order as
you move upward along
the line.
For instance, if y1 < y2 are
equilibrium solutions, the
phase line looks like

y2

y1

Plot equilibrium solutions
as dashed horizontal lines
in the ty-plane.
For instance, if 0 < y1 < y2are equilibrium solutions,
the ty-plane looks like

2(t) = y2

1(t) = y1

y

t

y2

y1

ϕ

ϕ

3. In each region, assess the
sign of f (y).
(a) If f (y) > 0, then the
solution curves passing
through points in that region
are increasing for all t, and
either:

Affix arrowheads
appropriately in each
region.

Sketch a representative
solution curve in each
region.

(i) lim
t →∞

y(t) = ∞ if there is
no larger equilibrium
solution.

y2

y1

y

t

y2

y1

(ii) lim
t →∞

y(t) = y2 if y2 is the
next larger equilibrium
solution.

y2

y1

y

t

y2

y1

(continued)




